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ABSTRACT

The problem of acquiring a simple but sufficiendy accurate model of a dynamic system is made more difficult when
the dynamic system of interest is a multibody system comprised of several components. A low order system model may
be created by reducing the order of the component models and making use of various available multibody dynamics
programs to assemble them into a system model. The difficulty is in choosing the reduced order component models to
meet system level requirements. The projection and assembly method, proposed originally by Eke, solves this difficulty
by forming the full order system model, performing model reduction at the system level using system level requirements,
and then projecting the desired modes onto the components for component level model reduction. In this paper, the
projection and assembly method is analyzed to show the conditions under which the desired modes are captured exactly-to
the numerical precision of the algorithm.

INTRODUCTION
The problem to be solved is that of simulating the dynamics of a multibody system. A multibody system is

comprised of two or more bodies or components connected at hinges. In general, the bodies may be rigid or flexible,
and the hinges may have from one to six independent degrees of freedom. Often all deformations of each body from its
reference condition are in the linear range, although the resulting system dynamics is nonlinear. In this case, nonlinear
system models may be constructed using linear dynamic models for each component, but allowing large angle motion
between components. This is the approach used in a number of existing multibody software tools.

The problem is that system models constructed in this manner may be too large for use in control system design
and simulation trades. Model reduction is needed to bring the model down to manageable size. If the system model is
available in linear form, system model reduction can be applied directly. For the class of multibody problems
discussed above, only the component models are available in linear form, and existing multibody software can be used
if we reduce the component models before assembly into the system model. A multibody system is inherently a
geometrically nonlinear system because of the time-varying, large-angle articulation between bodies.

Component model reduction is typically done to some level anyway if the source of the model is a finite element
program. This first level of model reduction often uses some simple criterion such as "keep all cantilever modes below
40 Hz." The challenge is to reduce the component model further in some manner that preserves how the component
behaves when connected to the complete system; how the component affects system level requirements. The
projection and assembly method described in this paper attempts to do this.

Model reduction for linear systems has been addressed by a number of researchers, resulting in a variety of
suggested linear system model reduction methods 1234. Fig. 1 gives a high-level view of how these methods work.
Less attention has been paid to the problem of model reduction for components of multibody systems. Component
modal synthesis methods 5678 have the capability of producing reduced order component models, but typically do so
based on component-level rather than system-level criteria. When only one body in a multibody system is flexible,
Macala 9 captures desired system modes exactly by augmenting the flexible body by the mass and inertia of the rigid
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body.A subsetofthefree-freemodesofthisaugmentedbodyarethenusedas the flexible body component modes.
Eke and Man 10 extend this capability to systems of more than one flexible body with a method that involves choosing
system modes of interest, projecting the mode shapes of these desired modes onto each flexible component, reducing
the order of each component accordingly, and assembling the components into a system model. Upon assembly, each
of the original desired system modes is recovered exactly (to the numerical precision of the algorithm.) As can be seen
in Fig. 2, this approach is conceptually more complicated than that shown in Fig 1., but allows the introduction of
system level requirements.
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Fig. 1. Conventional Model Reduction
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Fig. 2. Projection and Assembly Method

This paper analyzes the method outlined in Ref. 10 to show why the desired modes are returned exactly, presents
necessary conditions for the success of the procedure, and proposes an extension to the method to handle situations
when these necessary conditions are not met. Simple examples are presented to demonstrate the workings of the
algorithm. The name "Projection and Assembly Method" is used to describe this component model reduction method.

DESCRIPTION OF METHOD
The idea of the projection and assembly method is to decide what system modes are important and to choose

component models which, when assembled, capture those important system modes. The projection and assembly
method is described in detail in Ref. 10. It works as follows:

•Acquire component models
•Synthesize the system model in some configuration of interest
•Apply any system level model reduction desired to choose which system free-free modes to retain
•Project the mode shapes of these retained modes onto each component.
•Choose new component states such that only these projected modes are admissible motions
•Transform the component models into reduced order component models using these new states
•Assemble the reduced order component models into a reduced order system model
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The concept is made clearer by considering a simple qualitative example. Consider the planar motion of a system
consisting of a rigid hub with two identical beam appendages, one on each side. Ignoring motions along the beam
axes, the first five modes of this _ are sketched in Fig. 3.

Mode 1

Mode 2

Mode 3

Mode4

Mode5

• ° °,

Fig. 3. Qualitative Beam Example

In this example, the lowest three system modes are chosen to be retained in the reduced order model. The
projection step is illustrated in Fig. 4; these system modes are projected onto each of the two components. The
resulting projections are used as generalized mode shapes for component models.
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Fig. 4. Example of Projection onto Components

One side effect of the method is apparent by doing a little arithmetic. The projection and assembly method will project
three modes onto each body. Assembling the components into a system gives two constraint relations (to match the
halves of the rigid body together in angle and offset), When the reduced order component models are assembled, the

reduced o_der system model will have four modes (3+3-2). These four include the three desired modes plus one
"extraneous mode."
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ANALYSIS
Component Equations of Motion

Assume we have rlb bodies or components. The unconstrained equations of motion of each may be expressed as:

i

xj

where

U

n b

ui Giu, i=1,"-, nb 1.

is the body index,

is a set of generalized coordinates describing the motion of body i as a free body in inertial

space. This set of coordinates can be anything from geometric coordinates to free-free
normal modes to cantilever modes augmented by six rigid body modes for the fixed
end,

is the generalized mass matrix for body i,

is the generalized stiffness matrix for body i,

is the set of control inputs,

is the control distribution matrix for body i, and

is the number of bodies.

System Equations of Motion
A multibody system is created by constraining the components to share certain common motions and by adding

flexible connections between bodies. Assume that the constraints can be described in the form:

AX= 0 2.
where

A=CA, X =C4x;""xn'J
Let nc be the number of constraint equations in Eq. 2. The constraints may be introduced into the equations of

motion using a vector, A, of Lagrange multipliers. The constrained system is:

i=l,...,n b 3.

O.

Let P be any full rank matrix mapping a minimal systemstate,X, into

X= PX;, or xi= P#(, i=l,-'-,nbr

The constraint equation becomes:

°

°

AP_(= O. 6.

Since the states X are independent, AP=O. Once Pis chosen so that Eq. 6 is satisfied, the constraint equation (F-xl.4)
T

is automatically satisfied. Inserting F-xl.5 into Eqs. 3 and pre-multiplying by Pi gives:
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Summingover i"

Where

+ =,,/G,,,+ i= 1, • • •, nu o

M_+ Kx= Gu .

nb

M:XPfM, ,
i=-1

nb

K: E
#=_#

.

/=#

10.

Equation 8 is the system equation of motion incorporating all constraints. Converting Eq. 8 to modal form:

X= dr_q 11.

"_+ _q= _TG.. 12.
System Model Reduction

Assume we choose some model reduction method which yields as its output a set of n R modes, qR, to be

retained with the remaining set of nzmodes, qZ" to be zeroed. Then we can partition _ :

Or, setting qz = 0, the reduced order system model is:

q R + .O2qR = diTRGu 14.

x= '_,,_R 15.

If 1"22= diag(co_) then a homogeneous solution to Eq. 12, and therefore also a solution to the system of equations

3 & 4, is q = e] cos(colt ). Each of Xi, "Xt and A will similarly be described by sinusoids:

xi= Pi*RejCOS(_t), "xi= Pi*ROj(-o_)COS(O_/), A= AojCOS(O)/).

Inserting the above into Eq. 3 for U=0 gives a relation which will be needed in a later derivation:

[Mi(-al2) + Ki]Pi *Rej= ATAoI i= 1,..-, nb.
16.
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Component Model Reduction

None of the above is unique to the projection and assembly method, which uses the above as a starting point. The
concept is as follows: Cause each component to have, as an allowable motion, the mode shape of each retained mode
projected onto the component. When the system is reassembled from reduced order components, the retained mode will
still be an admissible motion of the reduced order system. In the following, it will be shown that in addition to being
an admissible motion of the reduced order system, it is a mode of the reduced order system.

Consider the projection of QR onto component i. Using Eqs. 5 and 15:

xi = P4_RqR. 17.

In general, qR should be of lower order than Xi. Where before, component / had/1 i degrees of freedom, Eq. 15

restricts the motion to n R degrees of freedom. Let XRi be a set of component i modes that span the space of

component motions allowed by Eq. 15. In Ref. 10, the choice: XRi "_ qR is made, so:

x i = Pi_RXRi . 18.

Implicit in this choice is the assumption that the matrix PieR is of full column rank. This assumption is

violated in a number of situations. The most obvious case is when one component has fewer degrees of freedom than

the number of modes in (/)Ft" Other examples arise when the projections of the modes are linearly dependant within

the subspace of a particular component. In a later section of this paper, an alternative choice for XRi is explored for

situations where P/t_ R is not of full rank. Writing the component equations of motion (Eq. 3) and constraint relation

(Eq. 4) in terms of the XRi :

eRi' Ri* KRFR =GR, '+Ar.,a, i= l,. .. ,nt, le.

nb

/=-I

20.

where

MR, PTMf',' R 21.

T T
GRi =_RPi Gi ARi = AiPt_ R 22.

and A R and X R are defined in the same manneras A and X. This system of equations in XRi and A may be

formulated in terms of a minimal set of states, XR, with some mapping PR"

X R = PRXR .

With this choice, Eq. 20 becomes:

ARPRX R = O.

Since the XR areindependent:

23.

24.
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ARP R = O. 25.

In actual practice, PR has a specific form, but to understand the behavior of the reduced order system, we can consider

• XRn bany PR which is of full rank and satisfies Eq. 25. If XR 1 -- XR2 ----" " = , as will be the case for the

desired retained modes, then Eq. 20 becomes:

i=-1
_RIXR1 - 0

which is automatically satisfied in view of Eq. 6. This suggests that a partial choice for mR is the column:

[ 1 1 • • "I IT. One full rank PR which satisfies Eq. 20 may be created by taking the singular value

decomposition of a portion of AR:

26.

and choosing:

so

']

Elnb
A R2 " " " A Rnb] VA2 1

UA2,AlVT1VA2 ] = 0

27.

as desired. Furthermore, PR is of full rank by construction.

Starting from Eq. 19, the equations of motion in terms of XR are:

nb nb nb
T .._P._,,p,,,x,,÷EP_:,,p_p,=-EP'.,G,,,,,÷P_.

i=1 i=1 i=1

28.

The form of m R suggests a partitioning of X R and m R into desired and extra states:

x. 5x4, ==-[P=o_=4
-LXE.J

whe_.mROi=/ an_PRE- VA • Inr_,_itionedform,Eq.28is:
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m

nb nb

_._MRi _._MRiPREi
i=-1 i=1

nb nb

XpTEiMRi T_._PhEiMRiPREi
i=1 i=1

+

m i

nb n b

_L,KRi __.KRiPREi
/=1 i=-1

nb nb

X pTEiKRi X pTEiKRiPREi

i=1 i=1

n b

_._GRi

= n b

sPT ,GR,
i=-1

u. 29.

By construction, the system is capable of taking the shape of any of the n R desired modes. It remains to be shown

that the XD are free-free normal modes of the reduced order system. To show that they are requires only that

oj oi __
X/0 l¢OSO)lt be a solution of Eq. 29 with U- 0. Assume XR--[0 ICOSO)I `' then: "XR (-4'XR and

Eq. 29 becomes two equations:

nb n_ KRil ?/=-* /=-* /
J

30.

REjKR I j o
i ?

+ _-'P s = 0. 31.

If both left-hand sides in the above equations evaluate to zero, then the desired modes are modes of the reduced order

system. Consider EMRi and EKRi:

nb nb n

i=1 i=-1 i=1 ,

Similarly,

/=-1

Eq. 30 becomes:

((-o_j)l + lr2)ej = {oJ,-o_7}eS= 0

and so is satisfied. Consider Eq. 31:
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t rnbTT ]
nb nbT TTT T T

(_6)_'PRE'ORPi AiAoj (_2)_'P'REiAR_oj = [0 vT2]ATRAoj (_6)OAoj = O.
i=1 i=1

Therefore the desired mode shapes and frequencies satisfy F-zl.29 and thus are normal modes of the reassembled reduced
order system.

COmponent Model Reduction--Extended Method

As mentioned above, the choice: XRi ffi qR depends on the matrix PIeR being of full column rank. When this

is not the case, the method can be extended to allow model reduction to proceed. Consider the singular value

decomposition of PfI_ R, suppressing the index i on the products in the SVD, let rbe the rank of PfI_ R, let n R be

the rank of @R' and let nibe the rank of Pi (and the number of states in x._. If r=-nR>nifRef. 10)

P/;DR= UXvT= [u I U 2] [ 01]vT= uIX1VT

r=n_n R £_y i hasfew DOF)

vT] TP,_R = uxvT= b_2,1 01 V; = UXIVI"

If r<nt_ r<nROinear dependant projected modes)

PfI)Rffi uxvT= [u ' U2] [0 1

To ensure that the set XRi is an independent set spanning the space of component motions, choose XRi =

21(0 V17"(0qFr In the event that r(i)=n R' V;(I) becomes V(I). This choiceof XRi gives for Eq. 18:

xj= U_(OxR_

Intheeventthatr(/)=npUl(/")becomesU(/). DefineOi-- Ul(/).

Choosing:

18A.

Eqs. 21-22 now take the form:

MR.=O;M.O, K..-oTK.o, 21A.

GR,-OTG, AR,=A.O, 22A.

V1(1)z,(1) V,(2)Z,(2)•••

o v,_ 27A.
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gives as desired, ARP R = 0. Moreover, PR is again full rank by construction. Partition mR as before:

°J
-nb nb -

nb - nb
T2,F'RE'MR,_'RO,2 f'rE_Af'REi-xEJ

i=1 i=1
m

-nb nb -
T

i=1 i=1

+
nb nb TT
_.P'REiKR,P RDi _.,PREiKRiPREi
i=1 i=-1

,,q, t'_ l

,_ c71

- rlb

EP_o,GR,
i=-f

n b

i=1
m

u 29A.

and the proof that the desired modes are normal modes of the reassembled reduced order system proceeds exactly as

before, using the above definition of PRDi and Eqs. 21A and 22A.

SIMPLE EXAMPLES

One Dimensional Three Disk Example

Fig. 5. One Dimensional Three Disk Example

Consider Fig. 5. In this example, there are three disks, with rotational displacements (from left to righ0 Y1" Y2'

and Y3 and inertias 4J, J, and J connected to ground and each other by torsion rods of equal spring constant, k. We

choose to consider this simple system as being composed of two simpler subsystems of components. We divide the
middle disk in half and allocate one half to each subsystem. Subsystem 1 contains the large disk and the left half of

the middle disk. Take XI= [Yl" Y2 ] T. Subsystem 2 contains the rest of the system. Take X2= [Y2" Y3 ] 7. Choosing

units to make Jand k equal to unity, the mass and stiffness matrices for each component are:

M,-[o' °°,],K,-[._I ],-_-[? o,]. ___[:,-,_].
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The constraint relation that connects the subsystems is that Xl(2) -- X2(1). Expressed in terms of a constraint matrix,

A:

A=[ A_ A2], [ A_ A2 x2

with
A_=[0 1],A2=[-I0].

One choice of P which reduces this to minimal form is:

-1 0 0
p= 0 0.7071 0

0 0.7071 0
0 0 1

The system mass and stiffness matrices are:

[400][20,0,, o lM-- 0 0.5 0 , K- 0.7071 1 -0.7071
0 0 1 0 -0.7071 2 •

The eigenvalue and eigenvector matrices for this system are:

= 0 1.1694 O-- -0.5539 -0.8155 1.0140
0 0 3.0502 , -0.2277 -0.6943 -0.6827 •

System model reduction: Assume we wish to capture only the lowest frequency system mode (1"22 = 0.2803), then

-0.44571
oe = -0.55391

.-o.2277J •

Component model reduction: choose XR1 = XR2 = qPeso

Xl = P1_RXR1=I "O'4457 ]XR1 x2 = P2_RXR2 =[-0.3917
-0.3917 ]XR2-0.2277

and the reduced order component mass and stiffness mauices are:

MR1 = [0.8714], KFtl = [0.2016], MR,2= [0.1286], KFt2 = [0.0787].

The reduced order constraint matrix is:

AR=[ -0.3916 0.3916 ].

Choose P R :

.o,07,]-0.7071 •

This gives the reduced order system:

[0.5])i'R+[0.1402]xR = 0.

Which has a single eigenvalue at .('22= 0.2803. In this ease, no extra modes are created because it happens that

(2n R- # constraints) = n R This is not true in general. The next example produces extra modes.
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On¢ Dimensional Five Disk Example

t44_tl 
- T - -

Fig. 6. One Dimensional Five Disk Example

Consider Fig. 6. In this example, there are five disks, with displacements (from left to right) YI' Y2' Y3"

Y4" and Y5 and inertias 4J, d, d, d, and d connected to ground and each other by torsion rods of equal spring

constant, k. We choose to consider this simple system as being composed of two simpler subsystems of components.
We divide the middle disk in half and allocate one half to each subsystem. Subsystem 1 contains the large disk

through the left half of the middle disk. Take Xl= D; 1, Y2" Y3 ] T. Subsystem 2 contains the rest of the system. Take

X2= [Y3"Y4" Y5 ] T. Choosing units to make d and k equal to unity, the mass and stiffness matrices for each

component are:

i4oo] [o,o0] [ 1o1 1M1 = 0 1 0 , M2 = 0 1 0 Kl = -1 2 , /(2 = -1 2 -1

0 0 0.5 0 0 1 ; 0 -1 1J 0 -1 2 •

The constraint relation that connects the subsystems is that XI(3 ) -- 762(1). Expressed in terms of a constraint

matrix, A:

A=[A_ A2], [ A_ A2 x2 ,
with

A,-[0 0 1], A2=[-1 0 0].

One choice of P which reduces this to minimal form is:

0 0 0 0 0

1 -0.7071 0.7071 0 0

p _ 0.5 0.5 0 0
0.5 0.5 0 0

0 0 1 00 0 0 1

The system mass and stiffness malrices are:

[4000o]I0 0.75 -0.25 0 0
M= 0 -0.25 0.75 0 0 , K=

0 0 0 1 0
0 0 0 0 1

2
-0.7071
0.7071

0
0

-0.7071
2.2071

-0.5
-0.5

0

0.71
-0.5

0.7929
-0.5

0

0
-0.5
-0.5

2
-1

0
0
0
-1
2

The eigenvalue and eigenvector matrices for this system are:
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0.1933 0 0 0 0 ]
I-22 8 0.5466 0 0 8= 0 1.4696 0

8 0 0 2.6609 0960 0 0 3. '

°[
System model reduction:

0.5466), then

-0.3489 0.3208 -0.1392 -0.0704 -0.0310
0.1217 0.3655 -0.0438 0.7626 0.8765
0.7270 0.4501 -0.8075 -0.0986 0.3272
0.3386 0.5329 0.3142 0.3895 -0.5924
0.1874 0.3666 0.5924 -0.5894 0.3635

Assume we wish to capture only the two lowest frequency system modes (1-22 = 0.1933,

[-0.3489 0.3208]
/0.1217 0.36551

_R =|0.7270 0.45011
| 0.3386 0.53291
L0.1874 0.3666J "

Component model reduction: choose X R1 = XR2 = q Peso

0.3489 -0.3208] [0.4244 0.4078]
x I = PI_RXR1 = 0.4280 0.0598lxm x2 = P2_FtXR2 =/0.3386 0.5329/xR2

.0.4244 0.4078J ' L0.1874 0.3666J "

and the reduced order component mass and stiffness matrices are:

0.7602o33 ,] o.128ooo 31]-0.3357 0.4985 ' -0.0831 0.3689 '

[ 0.2398 0.3357 ]MR2
L0.3357 0.5015J' K_ ---[ 0.0653 0.0831 l0.0831 0.1777 J "

The reduced order constraint matrix is:

AR=[0.4243 0.4078 -0.4243 -0.4078 ].

Choose PR:

mR --

-0.8603 0 0
0.2904 0.5926 0.5696
-0.3021 0.7762 -0.2151
-0.2904 -0.2151 0.7933

This gives the reduced order system:

[o.,9,4o.,7,1o.o,7,][0.20290.0,,30.050310.1781 0.2307 0.2649 _'R+ 0.0883 0.1494 0.1383 xR=O

0.0875 0.2649 0.3739 0.0503 0.1383 0.2062 '

which has three eigenvalues at I22 = (0.1933, 0.5466, 1.6873). The first two are the desired system modes, while the

third does not match any of the original system modes; it is an "extraneous mode."
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SUMMARY
In this paper the model reduction method described by Eke and Man in Ref. 10 has been analyzed to

demonstrate why the desired modes are returned exactly. An explicit set of necessary conditions involving the rank of

the projection matrix has been presented, and an extension to the method has been proposed which removes those
conditions. The method was demonstrated using two simple examples.

Future work will address extending the method to handle variable configuration systems such as those with

multiple articulation angles, better characterizing the "extraneous" modes which are a by-product of this method, and
examining scaling issues which will arise when relative sizes of singular values are used to determine how many
independent modes are projected onto a component.
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